26 research outputs found

    In vivo detection of cortical optical changes associated with seizure activity with optical coherence tomography.

    Get PDF
    The most common technology for seizure detection is with electroencephalography (EEG), which has low spatial resolution and minimal depth discrimination. Optical techniques using near-infrared (NIR) light have been used to improve upon EEG technology and previous research has suggested that optical changes, specifically changes in near-infrared optical scattering, may precede EEG seizure onset in in vivo models. Optical coherence tomography (OCT) is a high resolution, minimally invasive imaging technique, which can produce depth resolved cross-sectional images. In this study, OCT was used to detect changes in optical properties of cortical tissue in vivo in mice before and during the induction of generalized seizure activity. We demonstrated that a significant decrease (P < 0.001) in backscattered intensity during seizure progression can be detected before the onset of observable manifestations of generalized (stage-5) seizures. These results indicate the feasibility of minimally-invasive optical detection of seizures with OCT

    Cerebrovascular phenotypes in mouse models of Alzheimer’s disease

    No full text
    Alzheimer's disease (AD) is a devastating neurological degenerative disorder and is the most common cause of dementia in the elderly. Clinically, AD manifests with memory and cognitive decline associated with deposition of hallmark amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs). Although the mechanisms underlying AD remains unclear, two hypotheses have been proposed. The established amyloid hypothesis states that Aβ accumulation is the basis of AD and leads to formation of NFTs. In contrast, the two-hit vascular hypothesis suggests that early vascular damage leads to increased accumulation of Aβ deposits in the brain. Multiple studies have reported significant morphological changes of the cerebrovasculature which can result in severe functional deficits. In this review, we delve into known structural and functional vascular alterations in various mouse models of AD and the cellular and molecular constituents that influence these changes to further disease progression. Many studies shed light on the direct impact of Aβ on the cerebrovasculature and how it is disrupted during the progression of AD. However, more research directed towards an improved understanding of how the cerebrovasculature is modified over the time course of AD is needed prior to developing future interventional strategies

    The Role of Astrocytic Aquaporin-4 in Synaptic Plasticity and Learning and Memory

    Get PDF
    Aquaporin-4 (AQP4) is the predominant water channel expressed by astrocytes in the central nervous system. AQP4 is widely expressed throughout the brain, especially at the blood-brain barrier where AQP4 is highly polarized to astrocytic foot processes in contact with blood vessels. The bidirectional water transport function of AQP4 suggests its role in cerebral water balance in the CNS. The regulation of AQP4 has been extensively investigated in various neuropathological conditions such as cerebral edema, epilepsy, and ischemia, however, the functional role of AQP4 in synaptic plasticity, learning, and memory is only beginning to be elucidated. In this review, we explore the current literature on AQP4 and its influence on LTP and LTD in the hippocampus as well as the potential relationship between AQP4 in learning and memory. We begin by discussing recent in vitro and in vivo studies using AQP4 knockout (KO) and wild-type mice, in particular, the impairment of LTP and LTD observed in the hippocampus. Early evidence using AQP4 KO mice have suggested that impaired LTP and LTD is BDNF dependent. Others have indicated a possible link between defective LTP and the downregulation of glutamate transporter-1 which is rescued by chronic treatment of β-lactam antibiotic ceftriaxone. Furthermore, behavioral studies may shed some light into the functional role of AQP4 in learning and memory. AQP4 KO mice performances utilizing Morris water maze, object placement tests, and contextual fear conditioning proposed a specific role of AQP4 in memory consolidation. All together, these studies highlight the potential influence AQP4 may have on long term synaptic plasticity and memory

    Progressive Vascular Abnormalities in the Aging 3xTg-AD Mouse Model of Alzheimer's Disease.

    No full text
    Vascular dysfunction and structural abnormalities in Alzheimer's disease (AD) are known to contribute to the progression of the pathology, and studies have tended to ignore the role of the vasculature in AD progression. We utilized the 3xTg-AD mouse model of AD to examine individual cerebral vessels and the cortical vascular network across the lifespan. Our vessel painting approach was used to label the entire cortical vasculature, followed by epifluorescence microscopy. The middle cerebral artery (MCA) tree was assessed with confocal microscopy, and a new method was developed to assess branching patterns as a measure of aging-related changes. We found that vascular remodeling was profoundly altered at 4-6 months of age, when the 3xTg-AD mouse is known to transition to cognitive impairment and Aβ deposition in both sexes. Analysis of vascular features (density, junctions, length) of the MCA territory highlighted sex-dependent differences across the 3xTg-AD mouse lifespan, with no alterations in branching patterns. Our current cerebrovascular angioarchitectural analyses demonstrate progressive alterations in individual cortical vessels, as well as in the vascular network of the cortex. These new findings advance our understanding of brain anatomy and physiology in the 3xTg-AD mouse, while potentially identifying unique diagnostic signatures of AD progression

    Reduction of cerebral edema after traumatic brain injury using an osmotic transport device.

    No full text
    Traumatic brain injury (TBI) is significant, from a public health standpoint, because it is a major cause of the morbidity and mortality of young people. Cerebral edema after a TBI, if untreated, can lead to devastating damage of the remaining tissue. The current therapies of severe TBI (sTBI), as outlined by the Brain Trauma Foundation, are often ineffective, thus a new method for the treatment of sTBI is necessary. Herein, the reduction of cerebral edema, after TBI, using an osmotic transport device (OTD) was evaluated. Controlled cortical impact (CCI) was performed on adult female CD-1 mice, and cerebral edema was allowed to form for 3 h, followed by 2 h of treatment. The treatment groups were craniectomy only, craniectomy with a hydrogel, OTD without bovine serum albumin (BSA), and OTD. After CCI, brain water content was significantly higher for animals treated with a craniectomy only, craniectomy with a hydrogel, and OTD without BSA, compared to that of control animals. However, when TBI animals were treated with an OTD, brain water content was not significantly higher than that of controls. Further, brain water content of TBI animals treated with an OTD was significantly reduced, compared to that of untreated TBI animals, TBI animals treated with a craniectomy and a hydrogel, and TBI animals treated with an OTD without BSA. Here, we demonstrate the successful reduction of cerebral edema, as determined by brain water content, after TBI using an OTD. These results demonstrate proof of principle for direct water extraction from edematous brain tissue by direct osmotherapy using an OTD

    Localization of cortical tissue optical changes during seizure activity in vivo with optical coherence tomography.

    No full text
    Optical coherence tomography (OCT) is a high resolution, minimally invasive imaging technique, which can produce depth-resolved cross-sectional images. In this study, OCT was used to detect changes in the optical properties of cortical tissue in vivo in mice during the induction of global (pentylenetetrazol) and focal (4-aminopyridine) seizures. Through the use of a confidence interval statistical method on depth-resolved volumes of attenuation coefficient, we demonstrated localization of regions exhibiting both significant positive and negative changes in attenuation coefficient, as well as differentiating between global and focal seizure propagation
    corecore